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We have developed a model for microwave heating of a sphere in a rectangular
resonant cavity. The model calculates transient temperature distributions within a
sphere during the approach to steady state conditions or on the path to thermal
runaway. The calculation takes advantage of spherical symmetry and divides the
sample into concentric spherical shells. The temperature dependence of thermal and
dielectric properties of the sample arc taken into account and values of temperature,
heat flux density, and microwave absorption in cachshell arc systematically
updated as functions of time. The results of this transient model for alumina
spheres agree with the predictions of apreviously derived steady state model. Time
dependent temperature profiles will be presented for various experimental
conditions. An S-shaped microwave heating curve is obtained that is similar to the
1-1) model predictions of Kriegsmann.

INTRODUCTION

The theoretical background for our present work was developed and previously
reported in two stages, The first stage dealt with total microwave power absorption
by a homogeneous, lossy dielectric sphere in aresonant rectangular cavity [ 1]. The
second stage extended those results and dealt with steady state conditions in lossy
dielectric spheres [2] where thermal and dielectric properties were inhomogencous
overall,but could be treated as homogeneous in individual spherical shells.

The present work extends the previous studies to include the transient response of a
microwave heated spherical sample. Modeling of transient temperature profiles in
heated samples can be a powerful aid in processing of materials. Some important
benefits that will be discussed here arc (1) identification of parameters that
determine preheating and processing times and prediction of those times for
specified experimental conditions, (2) improved understanding of thermal runaway
and how to avoid it, (3) control of temperature profiles to improve the quality of
processed samples or to explore processing conditions that may produce ncw and
uscful materials. Significant progress has been reported by earlier workers in their
treatments of cylindrical |3] and onc-dimensional models [4], [ 5]. However, there
clearly is much remaining to be investigated and understood.

The basic problem of interest in this ncw study is to find simultaneous time-
dependent solutions of Maxwell’s equations and a heat balance equation throughout
the cavity and sphere, These equations may be strongly coupled in a non-linear



manner by a temperature dependent complex-valued dielectric constant, Just as in
the model for the steady state [2], conditions are specified that enforce approximate
spherical symmetry inside the sphere, Our theory takes advantage of this spherical
symmetry and divides the sample into spherical shells. Fach shell can have
different thermal and dielectric properties. Parts of the problem can then by solved
analytically while taking into account temperature dependence of therma and
dielectric properties of the sample, but other parts require application of numerical
methods. A gray body model was assumed for these calculations. The solution
yields values of temperature, heat flux density, and microwave absorption in each
shell that arc systematically updated as functions of time.

Some calculated results for alumina will be presented to illustrate benefits of such
modeling mentioned earlier. Aluminawas chosen since the temperature dependence
of the thermal and dielectric properties of this material have been measured (see
references 4 and 5in [2]), These theoretical calculations include time-dcpendent

temperature profiles during approach to steady state conditions or on a path to
thermal runaway.

‘1'111,(3RY

Calculation of time-dependent temperature profiles in a sample requires
simultaneous solution of a set of electromagnetic and thermal equations. The
electromagnetic fields must satisfy Maxwell’s equation throughout the cavity,
including the interior of the sample. These equations imply that the electric field
I =E,e " satisfies,
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inside the sample. Thermal energy balance ave.raged over ac yclc of clectromagnetic
ficld oscillation requires
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1 lere W is microwave power absorbed per unit volume:
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W= 5 e Fple. (4)
‘The heat flux density ¢ satisfies

g = "‘KVT. (5)




Also, C=- pc,,, where C is heat capacity per unit volume, p is the density of the
sample, and ¢/, is specific heat at constant pressure.

"The model assumes radiative boundary conditions at the sample surf ace,:
g, =oe(1! - 1%). (6)

I lere g, is the heat flux density normalto the surface, 7 and 7, are tempceratures

of the sample surface and of the cavity walls, respectively, e isemissivity and o is
the Stefan-Boltzmann constant,

1 iquations (1) and (3) arc direct] y coupled through the diclectric constant €, , which
istemperature dependent. Of particular interest is €, which is strongly temperature
dependent in cases presented in this paper. The set of electromagnetic and thermal
equations are non-linear in the clectric field and in the temperature. These equations
can be solved in genera only by using finite element methods.

Just as in the earlier treatment .of the steady state [2], the complexity of our problem
can be substantially reduced by confining attention to situations where the
temperature varies only radialy in the sample. in practice this condition can be
imposed to good approximation by taking the sample to be a sphere that is properly
positioned in a cavity with appropriately selected dimensions and mode of
excitation. A specific example will bc given later in this paper.

Under these circumstances, the sample can be treated as a collection of thin
spherical shells. The temperature-depen dent dielectric constant is regarded as a
constant throughout each shell, but it can vary from one shell to another. ‘Then for
a specified distribution of shell dielectric constants, the electromagnetic fields can be
treated analytically using scattering formalism, wherein any resonant modc of the
cavity is resolved into transversely polarized plane waves that impinge on the
sphere and arc then scattered. Inside each spherical shell there arc both incoming
and outgoing spherical waves that arc matched at shell boundaries. This scheme
provides approximate values for the fields and for the power absorbed per unit
volume in the system of shells.

The temperature-dependent quantities consisting of heat capacity per unit volume,
thermal conductivity and power absorbed per unit volume arc also treated as
constant in each shell, butmay vary from one shell to another. Temperature
dependence of emissivity is also taken into account. One can linearize the
temperature as a function of r in each shell and then analyticaly integrate. 1iq.(3)
over the volume of any shell. Next onc can usc finite difference ratios to replace

first derivatives with respect to time and radius and require that 7°(r) and ¢(r) be
continuous at the shell boundaries. Yor a closely spaced set of shell radii




{r, i=12,,.,N} and time instants {fq, & = 0,1,2,,.. M}, one finds that the
temperatures 77 = 7;(1, ) satisfy the following collations,
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Yor specified initial conditions one can calculate {W7*°,i =12,,.., N} and

propagate the tempcerature profile and microwave absorption forward in time with
the aid of gs. (6), (7), and (8), and results of the clectromagnetic wave scattering
theory. This formalism alows for the possibility that the normal mode amplitude

for the cavity excitation and the temperature of the cavity walls may change with
time.

When calculating temperature profiles using these finite difference equations, it is
importantto choose the mesh size for shell radii and time in a manner that meets
certain stability conditions that arc known from general theory of numerical analysis
|6]. Calculated results based on these formulas will be discussed next.

DISCUSSION

This spherical shell model was previously applied to calculate the steady state
behavior of alumina spheres heated in a single mode microwave cavity [2]. A IT™M
354 mode cxcited in a rectangular cavity with dime.nsions Of 1.x= 1025 cm, 1.y/l
=176, @nd 1.7/1.X =- 1.463 was chosento produce an essentially isotropic electric
ficld intensity near the center of the cavity. Yor those experimental conditions, the
'TM 354 mode frequency was f=- 7,21 Gllz and the empty cavity wave number was
k= 1.51 cm-1. The present study uses these experimental conditions to further
investigate the transient behavior of an alumina sphere as it approaches a steady
state condition or expericnces thermal runaway. Unless stated otherwise, the
predictions presented in this paper were determined by dividing the sphere into 20
equally spaced spherical shells. The clectric field strengths given in this paper arc
norms] mode characteristic amplitudes. Of course, the clectric ficld varies
throughout the cavity, including the interior of the sample.
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Figure 1. Transientresponseof a Figare 2. Comparison of calculated
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sphere. equilibrium profiles.

The transient response of an alumina sphere of radius 0.9 cm situated in the center
of the cavity and heated with the TM 354 mode continuously excited at a ficld
strength of 550 v/en] is shown in Fig. 1. The center and surface temperature of the
sphere. are shown as a function of time. Yor this experimental case, the center and
surface temperatures remain essentially equal below =~ 400 C. The sample surface
temperature reaches a steady state condition before the center. An equilibrium
temperature gradient between the center anti surface is achieved after ~ 50 minutes.
The calculated resultant steady state temperature gradient within the sphere is shown
in Fig. 2. The solid and dashed curves correspond to the present transient model
and steady statc model [2] respectively. Yor Ibis comparison, the sphere was
divided into 40 equally space.d spherical shells. The calculated internal gradients
agree to better than 1 % throughout the interior of the sphere. “1'hereisatemperature
di fference of=: 387 C bet wcen the center and surface of the sphere for these
experimental conditions. Calculations using only 20 concentric spherical shells
gave cssentially the same results for the transient model shown in Yig. 2, however,
the steady state model results were = 0.7% lower. This test demonstrates the faster
convergence of the transient model over the. steady state model.

The time require.d to reach steady state conditions is strongly dependent on the.
experimental conditions. This isillustrated inig. 3 where the transient behavior at
the center of a small 0.1 cm radius sphere is shown for various electric field
strengths. in this case, large field strengths are required to reach high equilibrium
temperatures. A ficld strength of 4000 v/cim leads to asteady state condition at the
center of the sphere. in= 1() minutes. As the ficld strength is gradually increased to
5000 v/em, higher steady state temperatures arc reached during the same 10 minute
time interval. The time. to achieve. steady state increases as the electric field is
increased further, until a critical ficld value (= 5200” v/cm)isrecached thatleads to
thermal runaway. For this experimental case, thermal runaway occurs after 30
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minutes. Yield strengths above this critical value produce the thermal runaway
condition more quickly (i.e., <7 minutes for 6000 v/cm).

Figure 4 shows the transient heating bchavior associated with various ambient
cavity wall temperatures. These calculations arc for the center temperature of a0.9
cm radius sphere. The time required torcach stcady state is the longest (70
minutes) for the cavity walls being held at room temperature throughout the heating
process. Asthe ambient cavity wall temperature iSincreased, the equilibration time
becomes significantly reduced (<35 minutes for 400 C ambient wall temperature).
increasing the cavity wall temperature above 400 C leads to higher steady state
temperatures since the walls arc now providing significant sample heat input along
with the microwaves. For these experimental parameters, wall temperatures = 8§00
Clcad to thermal runaway,

Wc have extensively explored the transient healing properties associated with
thermal runaway in amicrowave processed spherical sample. Figure 5 shows the
predicted temperature profiles within a 0.875 cm radius sphere during the thermal
runaway process. These curves correspond to asphere heated with an electric ficld
Strength of 2000 v/cm. A 100 C temperature gradient between the sphere center
and surface is generated after 83.5 seconds. At 96 scconds after starling the
process the center of the sample has become 365 C hotter than the surface. For
longer processing times, the surface temperature hardly changes (remaining near
600 C) while the sphere. center temperature experiences thermal runaway. We have
arbitrarily assumed that the sample will meltat 2(NO C which corresponds to = 100
seconds. These calculations suggest that it is difficult to anticipate thermal runaway
by monitoring only the surface temperature of a sphere.
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Figure 5. Temperature gradient within -~ Figure 6. Internal S-shaped heating
a sphere during thermal curve with thermal
runaway. runaway without melting.

in the previous study of steady state behavior [2], parametric studies were
performed primarily near the lowest absorption peak associated with
electromagnetic resonance’s within the sphere. Anomalous behavior similar to
thermal runaway was predicted (scc I<ig. 3 inref. [2]). The present transient model
was used to explore, in more detail, the behavior of this predicted internal runaway
phenomenon. The ]-]) microwave modeling studies of Kriegsmann [4] have
predicted an S-shaped heating curve that is a multivalued function of the microwave
power. This ncw response curve implies that them arc actually two branches to the
heating curve; alower temperature branch that can lead to thermal runaway and an
upper branch that was not previously anticipated, This S-shaped heating curve
prediction was tested within the context of the transient spherical shell model.
Figure 6 shows the results of this analysis at the center of a 0.875 cm radius
sphere. A sample of this sizc was previously studied using the steady state model
(see Fig.3inref [2)]). The carlier work predicted the lower branch of the heating
curve, the therma runaway jump (upward arrow) to the upper heating curve and the
higher temperature behavior of the upper curve (see Fig. 4 of ref. [2]). This
predicted thermal runaway phenomenon did not Icad to sample melting because for
thisexperimental case the enhanced microwave heating associated with the runaway
becomes significantly reduced athigher temperatures. The results of the transient
model agreed with the previous steady state predictions for these experimental
parameters. The multivalued portion of the upper branch of this S-shaped heating
curve was determined by initially heating the sample with afield strength 0of410
v/cm that is greater than that associated with runaway (400 v/cm). The field
strength was reduced to anew constant value when the temperature of the sample
reached 1200 C which is higher than the upper branch in the region shown here. If
there was no multivalued upper branch the system would cool back down to the
lower branch value corresponding to the constant field strength. This procedure
produced the predicted multivalued portion of the upper branch shown in Fig. 6.



‘The unstable branch of the S-shaped curve. in Fig. 6 defines the locus of points that
separate regions attracted by the upper and lower branches. The unstable branch
was determined using the following procedure. First, afield strength was chosen
between the inflection point values associated with the upper and lower branches,
i.e, between 388 -400 v/em. The sphere was again initially heated at 410 v/cm
until its temperature rcached a predetermined value between the inflection point
temperatures associated with the upper and lower branches, i.e., between 700 -
1000 C. The field strength would then be lowered to the chosen value and the
direction of the sphere temperature was determined. This procedure was repeated
in temperature intervals of 20 C for the chosen field strength until the unstable
temperature value was identificd. The rest of the unstable curve was determined by
repeating the procedure for arange of chosen ficld strengths.

11 ysteresis behavior is one of the consequences of this S-shaped heating curve.
This type of behavior is aso illustrated in¥ig. 6. During an initial heating phase,
with the field strength slowly incremented up to 410 v/cm, the sample will follow
the lower steady state branch until the inflection point temperature of 700" C is
reached. At this time the sample will experience athermal runaway effect (upward
arrow) untilit reached the upper branch at = 1140 C. Now the sample will continue
to following the upper branch as its temperature increased to the steady state
temperature of 1205 C associated with the final field strength of 410 v/cm. A
different processing curve will be attained if the field strength is now slowly
i ncremented down ward to zero, This time the sample follows the upper branch
downward to the inflection point temperature at 1()()0 C where it abruptly decreases
(downward arrow) to 535 C at the lower branch. Further reduction of the field
strength causes the sample to move down the lower branch.

We have investigated the effect of the temperature gradient on the unstable
intermediate branch of the heating curve. Any spatial gradicnt configuration can be
analyzed with the transient model. A gradient in which the surface was hotter than
the center by 200 C produced the. same unstable curve as shown in Fig. 6. The
hypothetical situation where the surface ancl center have equal temperaturcs was
also investigated. Yor this case an inverted v gradient was used with the hottest
region being half way between the center and the surface at a temperature 200" C
above these extreme positions. Tor this gradient, the single case studied suggested
that the unstable curve was approximately dctermined by the highest temperature in
the starting inverted v-shaped profile.

To verify that (he S-shaped heating curve shown in Fig. 6 was a general
phenomenon, we analyzed the microwave heating curve for a different set of
experimental conditions leading to thermal runaway. 1 ‘igure 7 shows the S-shaped
heating curve for a 0.825 cm radius sphere that illustrates a thermal runaway
phenomenon lecading to sample melting. 'This size sample was also previously
studied using the steady state mode] (see 1 ‘ig.3 inref | 2.]). For this experimental
case, the runaway effect that occurs upon heating will cause the sample to melt.
The upper branch of the S-shaped curve is masked by the lower branch and can
only be obtained by controlling the. the.rmal runaway phenomena [5]. The simplest
method for reaching the upper branch is to initially heat the sample with a field
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Figure 7. S-shaped beating curve with Figure 8. S-shaped heating curves
thermal runaway leading to for sphere center and
melting. surface.

strength larger than the critical field strength for runaway (480 v/cm corresponding
to 620 C) and then at the appropriate time reduce the field strength sufficiently to
causc tbc sample to equilibrate on the upper branch. The ability to access this upper
branch would alow the processing of a materia at high temperatures using lower
power levels. This ability also would open up the temperature range for a given
size sample which can be studied for possible new solid stale phases [3].

The S-shaped heating curves shown in Figs. 6 and 7 are associated with the center
temperature of the sphere. The variation of this heating curve on the position within
the sphere is illustrated in Fig. 8 for both the sphere center and surface. The
temperature difference between the center and surface gradually increases with
temperature, becoming measurable (= 5 C) above 500" C. For temperatures on the
upper branch of the heating curve the temperature difference can become very large
(= 600 C at a center temperature of 1950 C).

in conclusion, wc have. developed a ncw transient mode] for the processing of a
spherical sample in arectangular cavity, This mode], based on spherical symmetry,
has elucidated the bchavior of the large internal temperature gradients attained
during the approach to steady state or thermal runaway. The ability to follow the
time evolution of the sample during processing also provides a method for studying
the features of the predicted multivalued microwave_beating curve, We have
investigated the behavior of this S-shaped curve in both the stable and unstable
regions. 1 ixperimental access to the predicted high temperature branch of the
heating curve. shouldlead to improved mcthods for microwave sintering of
ceramics. The present transient model can support the development of experimental
techniques for reaching this branch.

ACKNOWLEDGMENT



The rescarch described in this article was carried out at the Jet Propulsion

Laboratory, California Institute of Technolog y, under contract with the National
Aeronautics and Space Administration.

REFERENCES

I.

0.

H.W. Jackson and M. Barmatz, “Microwave Absorption by a l.ossy
Dielectric Sphere in a Rectangular Cavity,” J. Appl. Phys. 10,5193 (1991).

M. Barmatz and 11.W. Jackson, “Steady Statc Temperature Profile in a
Sphere 1 leated by Microwaves,” MRS Symp. Proc. Vol. 269, pp.97-103,
(1992).

Y.1.. Tian, "Practices of Ultra-Rapid Sintering of Ceramics Using Single
Mode Applicators,” Ceramic Transactions Vol. 21, pp. 283-300, (1991);
Y.L. Tian, J.H. Feng, 1..C. Sun, and C.J. Tu, "Compute Modeling of Two
Dimensional Temperature Distributions in Microwave Heated Ceramics,”
MRS Symp. Proc. Vol. 269, pp. 41-46, (1992).

G. Kriegsmann, “Microwave lecating of Ceramics: A Mathematical
Theory,” Ceramics Transactions Vol. 21, pp.177-183, (1991); "Thermal
Runaway in Microwave, Heated Ceramics: A One-Dimensional Model," J.
Appl.Phys. 71,1960 (1992).

G. Kricgsmann, "Thermal Runaway and its Control in Microwave lleated
Ceramics,” MRS Symp. Proc. Vol. 269, pp.257-264, (1992).

Mitchell and Griffiths, The Finite - Difference Method in Partial Differential
I'quations, (Wiley, 1980), Ch. 2.

10



